Skip to Main Content

Bankstown Hospital - Grand Rounds - Further Reading

A guide to further information resources to support Grand Rounds and vocational education

Introduction

Welcome to the Grand Rounds Further Reading List, Nuclear Medicine edition, brought to you by the Clinical Library, on Level 4, next to the Auditorium.

This library guide is to help support you in your professional development. Please give us feedback so we can improve this list in the future.

So.me sections are under construction and will be ready later in the year. If you are presenting at a later Grand Rounds, please contact lynne.roberts3@health.nsw.gov.au and tell us about the content of your paper so we can add appropriate resources to the list for when you present your paper.

If you have any questions, please contact the Clinical Library on 9722 8250 or email SWSLHD-BankstownLibrary@health.nsw.gov.au or visit us Monday to Fridays, 8.30am - 5.00pm.

THIS WEEK'S TOPIC

Update in Positron Emission Tomography (PET)

Journal Articles

Albano, D., et al. (2024). "The Role of Fibroblast Activation Protein Inhibitor Positron Emission Tomography in Inflammatory and Infectious Diseases: An Updated Systematic Review." Pharmaceuticals 17(6): 716  https://www.mdpi.com/1424-8247/17/6/716 REQUEST ARTICLE

The role of fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) is emerging for the assessment of non-oncological diseases, such as inflammatory and infectious diseases, even if the evidence in the literature is still in its initial phases. We conducted a systematic search of Scopus, PubMed/MEDLINE, Embase, and Cochrane library databases for studies published before 31 December 2023 reporting infectious and inflammatory disease imaging with FAPI PET/CT. We included twenty-one studies for a total of 1046 patients. The most frequent disease studied was lung interstitial disease, investigated in six studies for a total of 200 patients, followed by bone and joint diseases in two studies and 185 patients, IgG4-related disease in 53 patients, and Crohn’s disease in 30 patients. Despite the heterogeneity of studies in terms of study design and technical features, FAPI PET/CT showed a high detection rate and diagnostic role. Moreover, when compared with 2-[18F]FDG PET/CT (n = 7 studies), FAPI PET/CT seems to have better diagnostic performances. The presence of chronic inflammation and tissue remodeling, typical of immune-mediated inflammatory conditions, may be the underlying mechanism of FAPI uptake.

Hicks, R. J., et al. (2024). "Total-Body PET/CT: Pros and Cons." Seminars in Nuclear Medicine:   https://www.sciencedirect.com/science/article/pii/S0001299824000655  REQUEST ARTICLE

PET/CT devices with an axial field-of-view (FOV) of 1 m allow simultaneous imaging from the head to the upper thighs, the typical axial extent of many “whole-body” oncological studies acquired by moving a patient sequentially through a conventional FOV device, or rapid total-body imaging using the same approach. Increasing the FOV to around 2 m provides true simultaneous total-body imaging. Either approach dramatically increases the sensitivity for detection of annihilation events arising within the body. For the purposes of this review, both configurations are considered to represent “total-body” PET/CT devices because they share both advantages and disadvantages. These pros and cons are discussed in the context of both clinical and research applications from a patient and institutional perspective.

Kumar, R., et al. (2025). "Updates in the Role of Positron Emission Tomography/Computed Tomography in Radiation Oncology in Gastrointestinal Malignancies." PET Clinics 20(2): 219-229  https://doi.org/10.1016/j.cpet.2025.01.004 REQUEST ARTICLE

 Positron Emission Tomography/Computed Tomography (PET/CT) plays a critical role in managing gastrointestinal (GI) cancers within radiation oncology. It enhances tumor detection, staging, and lymph node involvement assessment, leading to better-targeted radiation treatment. PET/CT also aids in delineating tumor volumes to minimize geographic misses, enabling precise dose escalation to metabolically active regions. Despite its benefits, PET/CT has limitations such as false positives and dependency on complementary imaging. Emerging technologies offer real-time adjustments and personalized treatments, advancing precision medicine in GI radiation oncology. Further research is needed to refine PET/CT integration for improved treatment outcomes and cost-effectiveness.

               

Liu, J., et al. (2025). "The Value of Artificial Intelligence in Prostate-Specific Membrane Antigen Positron Emission Tomography: An Update." Seminars in Nuclear Medicine 55(3): 371-376  https://www.sciencedirect.com/science/article/pii/S000129982400120X REQUEST ARTICLE

 This review aims to provide an up-to-date overview of the utility of artificial intelligence (AI) in evaluating prostate-specific membrane antigen (PSMA) positron emission tomography (PET) scans for prostate cancer (PCa). A literature review was conducted on the Medline, Embase, Web of Science, and IEEE Xplore databases. The search focused on studies that utilizes AI to evaluate PSMA PET scans. Original English language studies published from inception to October 2024 were included, while case reports, series, commentaries, and conference proceedings were excluded. AI applications show promise in automating the detection of metastatic disease and anatomical segmentation in PSMA PET scans. AI was also able to predict response to PSMA-based theragnostic and aids in tumor burden segmentation, improving radiotherapy planning. AI could also differentiate intraprostatic PCa with higher histological grade and predict extra-prostatic extension. AI has potential in evaluating PSMA PET scans for PCa, particularly in detecting metastasis, measuring tumor burden, detecting high grade intraprostatic cancer, and predicting treatment outcomes. Larger multicenter prospective studies are necessary to validate and enhance the generalizability of these AI models.

               

López-Mora, D. A., et al. (2022). "Digital PET vs Analog PET: Clinical Implications?" Semin Nucl Med 52(3): 302-311   1558-4623 https://www.sciencedirect.com/science/article/abs/pii/S0001299821000805 REQUEST ARTICLE

Positron emission tomography (PET) is a functional imaging technique introduced in 1970s. Over the years, PET was used alone but is in 2000 when the first hybrid PET/CT device was clinically introduced. Since then, PET has continuously been marked by technological developments, being the most recent one the introduction of silicon photomultipliers (SiPMs) as an alternative to standard photomultiplier tubes used in analog PET/CT systems. SiPMs, the basis for the so called digital PET/CT systems, are smaller than standard photomultiplier tubes (enabling higher spatial resolution) and provide up to 100% coverage of the crystal area, as well as high sensitivity, low noise, and fast timing resolution. SiPMs in combination with optimized acquisition and reconstruction parameters improve the localization of the annihilation events, provide high definition PET images, and offer higher sensitivity and higher diagnostic performance. This article summarizes the evidence about the superior performance of the state of the art digital PET and highlights its potential clinical implications. Digital PET opens new perspectives in the quantification and characterization of small lesions, which are mostly undetectable using analog PET systems, potentially changing patient management and improving outcomes in oncological and non-oncological diseases. Moreover, digital PET offers the possibility to reduce radiation dose and scan times which may facilitate the implementation of PET to address unmet clinical needs.

Ulaner, G. A. and S. C. Vaz (2024). "Women's Health Update: Growing Role of PET for Patients with Breast Cancer." Seminars in Nuclear Medicine 54(2): 247-255  https://www.sciencedirect.com/science/article/pii/S0001299824000060 REQUEST ARTICLE

Positron Emission Tomography (PET) has been growing in usage for patients with breast cancer, due to an increased number of FDA-approved PET radiotracers pertinent to patients with breast cancer as well as increased prospective evidence for the value of these agents. The leading PET radiotracer for patients with breast cancer is 18F-fluorodeoxyglucose (18F-FDG), which measures glucose metabolism. There is prospective evidence for the use of 18F-FDG PET in systemic staging of newly diagnosed locally advanced breast cancer (stages IIB-IIIC), monitoring breast cancer treatment response, and detecting breast cancer recurrence, particularly in no special type (NST) breast cancer. 16α-18F-fluoro-17β-Fluoroestradiol (18F-FES) is a radiolabeled estrogen which evaluates estrogen receptor (ER) accessible for estrogen binding. There is prospective evidence supporting 18F-FES PET as a predictive biomarker for selecting patients with metastatic breast cancer for endocrine therapies. 18F-FES PET has also been shown to be valuable in the evaluation of ER status of lesions which are difficult to biopsy, for evaluation of ER status in lesions that are equivocal on other imaging modalities, and for selecting optimal dosage of novel ER-targeted systemic therapies in early clinical trials. Multiple investigators have suggested 18F-FES PET will have an increasing role for patients with invasive lobular breast cancer (ILC), which is less optimally evaluated by 18F-FDG PET. Sodium 18F-Fluoride (18F-NaF) evaluates bone turnover and has been effective in evaluation of malignancies which commonly metastasize to bone. In patients with metastatic breast cancer, 18F-NaF PET/CT has demonstrated superior sensitivity for osseous metastases than 99mTc-MDP or CT. In addition to these three FDA-approved PET radiotracers, there are multiple novel radiotracers currently in clinical trials with potential to further increase PET usage for patients with breast cancer.

Books

E-Books

Online Resources

Journals